Tetrahedron Letters,Vol.27,No.34,pp 4015-4018,1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain Pergamon Journals Ltd.

TRIMETHYLSILYL-1,2-VERSCHIEBUNG VON GERMANIUM ZU KOHLENSTOFF BEI DER SPALTUNG VON [(TRIMETHYLSILYL)-GERMYL]METHYL-ETHERN

G. Märkl und R. Wagner Institut für Organische Chemie der Universität Regensburg Universitätsstraße 31, D-8400 Regensburg

Summary: The ether-cleavage of all investigated [(tristrimethylsily1)germyl]ether and ary1(alky1)-[(bisdimethylsily1)-germyl]ether by BCl₃ is accompanied by the title-rearrangement.

Eine kürzlich erschienene Arbeit über [Tris(trimethylsilyl)-germyl]-Verbindungen von A.G. Brook u. Mitarb. [1] veranlaßt uns, über eigene Ergebnisse zur Chemie von Tetrakis(trimethylsilyl)german 1 zu berichten.

Das German <u>1</u> [2], durch Umsetzung von Me₃SiCl und GeCl₄ mit geraspeltem Lithium in THF bei -40 ^OC zugänglich (farblose, im Hochvakuum sublimierbare Verb., Schmp. 270 ^OC), läßt sich analog dem [Tetrakis(trimethylsilyl)]silan [3] durch Umsetzung mit MeLi in THF/Et₂O (O.2 m Lösung, Rkt.-zeit 48 h, ¹H-NMR-Kontrolle zum [Tris(trimethylsilyl)-germyl]lithium 2 spalten [4].

Bei der Umsetzung von <u>2</u> mit den (Alkyl,Aryl)-halogenmethylethern <u>3</u> in THF bei -78 ^OC bis 25 ^OC werden die (Alkyl,Aryl)-[tris(trimethylsilyl)-germyl]methylether <u>4</u> als farblose, wachsartig kristalline Verbindungen in 57-89proz. Ausb. erhalten (Tab. 1):

<u>a</u>, R= H; <u>b</u>, R= Me₃C; <u>c</u>, R= C₆H₅; <u>d</u>, R= Mesityl; Me₃Si = Tms.

Bei der Umsetzung der [Tris(trimethylsilyl)-germyllether <u>4</u> mit äquimolaren Mengen BCl_3 in abs. n-Pentan/Hexan (Rkt.zeit 30 min bei 0[°]C, dann 30 min bei 25^{°°}C) erhält man nach der destillativen Aufarbeitung farblose öle,

Tab. 1:	Physikalische und spektroskopische Daten von 4		
Verb. R ^{a)}	Ausb. [%]	¹ H-NMR-Spektren (CDCl ₃ , δ (ppm)); SiMe ₃ ; CHR; OMe; R. <u>MS</u> (70 eV), m/z (rel. Int. %)	
<u>4a</u> H	89	0.23 (s); 3.66 (s); 3.24 (s); M^+ , 334 (< 1); $[(Me_3Si)_3Ge]^+$, 289 (14); $[Me-SiMe_3]^+$, 261 (14); $[M-MeOSiMe_3]^+$, 230 (73); 215 (100) b)	
4b CMe3	76	0.25 (s); 3.46 (s); 3.32 (s); 0.93 (s);	
$\frac{4c}{C_6H_5}$	57	0.14 (s); 4.67 (s); 3.22 (s); 7.15–7.37 (m); M^+ , 410 (< 1); [M- MeOSiMe ₃] ⁺ , 306 (60); [(Me ₃ Si) ₃ Ge] ⁺ , 289 (71); 215 (100) b)	
4d Mesityl		0.15 (s); 3.84 (s); 3.07 (s); Phenyl-H: 6.77 (s); o-CH ₃ : 2.25 (s); p-CH ₃ : 2.44 (s); $[Ge(SiMe_3)_3]^+$, 289 (<1); $[Mesityl-CHOCH_3]^+$, 163 (100).	

a) Sdp. $[^{O}C]/10^{-2}$ Torr; <u>4a</u>: 100, Schmp. 56-58; <u>4b</u>: Subl. 110, wachsartig; <u>4c</u>: Subl. 130, wachsartig; <u>4d</u>: Subl. 110, Schmp. 119-121; b) in allen Massenspektren tritt das Signal [Me_2Si-Si(SiMe_3) = CH_2]⁺ als base-peak auf.

bei denen es sich um die Umlagerungsprodukte 5 einer durch die Etherspaltung ausgelösten 1,2-Verschiebung eines SiMe₂-Restes vom Germanium zum benachbarten Kohlenstoffatom handelt (Tab. 2):

Tab. 2: Physikalische und spektroskopische Daten der 1-[Chlor-bis-(trimethylsilyl)germyll-1-trimethylsilyl-alkane 5

Verb. R ^{a)}	Ausb. [%]	¹ H-NMR (CDCl ₃ , δ (ppm), Ge-SiMe ₃ ; C-SiMe ₃ , -CHR, R; MS (70 eV); m/z (rel. Int. %)
<u>5а</u> Н	99	0.30 (s); 0.09 (s); 0.50 (s); M^+ , 338 (< 1); $[M- \ CH_3]^+$, 323 (18); $[M- \ CL]^+$, 303 (6); $[M- \ ClsiMe_3]^+$, 230 (100); 215 (13)
5b CMe ₃	71	0.31 (s, 9 H); 0.22 (s, 9 H); 0.14 (s, 9 H); 1.50 (s); 1.05 (s);
5 <u>c</u> C ₆ H ₅	99	0.34 (s); 0.19 (s); 2.38 (s); 6.81-7.28 (m); M^+ , 414 (< 1); $[M- \ CH_3]^+$, 399 (18); $[M- \ CL]^+$, 379 (9); $[M- \ ClSiMe_3]^+$, 306 (100); $[306- \ CH_3]^+$, 291 (27)
<u>5d</u> Mesityl		0.35 (s); 0.12 (s); 0.06 (s); 2.78 (s); 6.85 (s); $o-CH_3$: 2.25 (s); p-CH ₃ : 2.28 (s); M ⁺ , 456 (< 1); [M- ·CH ₃] ⁺ , 441 (12); [M- ClSiMe ₃] ⁺ , 348 (83); [348- ·CH ₃] ⁺ , 333 (8); [348- ·SIMe ₃] ⁺ , 275 (96); [Me ₃ Si-Ge=C-Mesity] ⁺ , 274 (100)

a) Sdp. ^OC /10⁻² Torr; <u>5a</u>: 120; <u>5b</u>: 130; <u>5c</u>: 140; <u>5d</u>: 160; farblose, nicht kristallisierende öle.

Die Umlagerung $\underline{4} \rightarrow \underline{5}$ ist unseres Wissens die erste 1,2-Verschiebung eines Silylrestes vom Germanium zu Kohlenstoff und stellt formal ein elementorganisches Analogon der Wagner-Meerwein-Umlagerung dar. Die intermediäre Bildung eines Carbeniumions ist hierbei ebenso wie die einer kationischen Germaniumspezies wenig wahrscheinlich [5]. Plausibel ist ein synchroner Ablauf von Etherspaltung und Silylwanderung, letztere wird wahrscheinlich durch den nucleophilen Angriff von Cl⁻ oder [(MeO)BCl₃]⁻ am Germanium zusätzlich begünstigt [6].

Die sehr viel höhere Wanderungstendenz des Me₃Si-Restes vom Germanium zum benachbarten Kohlenstoff gegenüber Aryl- und Alkylsubstituenten am Heteroatom kann durch die Etherspaltung der Aryl(Alkyl)-[(bistrimethylsilyl)-germyl]ether <u>7</u> belegt werden. Das aus <u>4a</u> durch Spaltung mit 1 Moläquivalent Brom in 91-proz. Ausb. erhältliche Bromgerman <u>6</u> (Sdp. 80 °C/ 10^{-2} Torr; ¹<u>H-NMR</u> (CDCl₃), SiMe₃: 0.30 ppm (s); OCH₃: 3.38 (s); -CH₂O-: 3.98 (s)) läßt sich durch Umsetzung mit den entsprechenden Grignard- bzw. Lithium-Verbindungen glatt in die Germylether <u>7</u> (Tab. 3) überführen:

<u>a</u>, R= C_6H_5 ; <u>b</u>, R= C_2H_5 ; <u>c</u>, R= CH=CH₂; <u>d</u>, R= 4-MeO- C_6H_4 ; <u>e</u>, R= C=C-Ph.

Bei der Umsetzung von 7 mit BCl₃ unter den für <u>4</u> beschriebenen Bedingungen entstehen aus den Germylethern <u>7a</u> – <u>7c</u> ausschließlich die Produkte <u>8a</u> – <u>8c</u> der 1,2-Me₃Si-Verschiebung vom Germanium zum Kohlenstoff, während <u>7e</u> und überraschenderweise auch die p-Anisylverbindung <u>7d</u> unter Eliminierung von R und normaler Etherspaltung in das Chlorgerman (Me₃Si)₂Ge(C1)CH₂Cl übergehen. Die einfache Etherspaltung auch von <u>6</u> zu (Me₃Si)₂Ge(Br)CH₂Cl läßt annehmen, daß die Umsetzung von <u>7d,e</u> mit BCl₃ durch einen Ge-R \rightarrow Ge-Cl-Austausch eingeleitet wird.

Die BCl_3 -Etherspaltung des Trimethylgermyl-germylethers <u>9</u> (Schmp. 69-71 ^OC, farblose Kristalle) [Synthese aus <u>10</u>, Schmp. 277-280 ^OC über die zu <u>2</u> analoge Germyllithiumverbindung <u>11</u> durch Umsetzung mit Chlormethylether] zeigt mit der Bildung eines nicht-trennbaren Gemisches von <u>12a</u> und <u>12b</u> (Ausb. 89 %), daß die Wanderungsfähigkeit von Me₃Si- und Me₃Ge vergleichbar ist:

Tab. 3: Physikalische und spektroskopische Daten von 7 und 8

Verb. a)	Ausb. [%]	$ \frac{1_{\text{H-NMR}}}{\text{MS}} (CH_2Cl_2, \delta(\text{ppm})); \text{ Ge-SiMe}_3; \text{ C-SiMe}_3; -CH_2-; \text{ OCH}_3; \text{ R} $
<u>7a</u>	81	0.28 (s); 3.95 (s); 3.40 (s); 7.26-7.61 (m); $[M- CH_3]^+$, 323 (2); $[M- CH_2OMe]^+$, 293 (29); $[M- MeOSIMe_3]^+$, 234 (22); $[234- CH_3]$, 219 (100)
<u>7b</u>	62	0.16 (s); 3.63 (s); 3.27 (s); 0.85-1.25 (m)
<u>7c</u>	65	0.15 (s); 3.55 (s); 3.18 (s); 5.30-5.94 (AB-System)
<u>7d</u>	57	0.35 (s); 3.99 (s); 3.46 (s); 7.24 (AB-System), OCH ₃ : 3.46 (s); [M- 'CH ₃] ⁺ , 323 (12); [M- MeOSiMe ₃] ⁺ , 264 (12)
<u>7e</u>	82	0.36 (s); 3.83 (s); 7.23-7.51 (m); M^{+*} , 362 (7); $[M- \ CH_3]^+$, 343 (3); [M- MeOSIMe ₃] ^{+*} , 258 (17); [258- \ CH_3]^+, 243 (43); 173 (100)
<u>8a</u>	56	0.36 (s); 0.06 (s); 0.68 (s); 7.36-7.74 (m); $[M- CH_3]^+$, 327 (7); $[M- ClsiMe_3]^+$, 234 (57); [234- CH_3]^+, 219 (100)
<u>8b</u>	75	0.32 (s); 0.07 (s); 0.39 (s); 1.17 (breite Bande); M^+ , 294 (2); 245 (14); $[M-ClSiMe_3]^+$, 186 (100); $[M-C_2H_5]^+$, 157 (43)
<u>8c</u>	71	0.29 (s); 0.10 (s); 0.48 (s); 5.59–6.12 (AB-System); M^+ , 292 (8); [M- 'CH ₃], 277 (1); [M- ClSiNe ₃] ⁺ , 184 (89); [184– 'CH ₃], 169 (100)

a) Sdp. [⁰C]/10⁻² Torr; <u>7a</u>: 90; <u>7b</u>: 75; <u>7c</u>: 65; <u>7d</u>: 150; <u>7e</u>: 130; <u>8a</u>: 100; <u>8b</u>: 70; <u>8c</u>: 70; farblose öle.

LITERATUR

[1] A.G. Brook, F. Abdesaken, H. Söllradl, J. Organomet. Chem., 299, 9 (1986).

- [2] H. Burger, V. Goetze, Angew.Chem., Int.Ed.Engl. 7, 272 (1968); die von diesen Autoren beobachtete Reaktion des GeCl₄ zu elementarem Germanium läßt sich bei -40 ^OC weitgehend unterdrücken.
- [3] H. Gilman, J.M. Holmes, C.L. Smith, Chem.Ind. (London), <u>1965</u>, 848; siehe auch G. Gutekunst, A.G. Brook, J. Organomet. Chem. <u>225</u>, <u>1</u> (1982).
- [4] O.W. Steward, J. Organomet. Chem. <u>168</u>, 33 (1979); die hier beobachteten mäßigen Ausbeuten an <u>2</u> sind auf zu kurze Reaktionszeiten zurückzuführen.
- [5] Über einige Tms-Si-CH₂-Cl → Cl-Si-CH₂Tms-Umlagerungen mit AlCl₃ wurde von M. Kumada und Mitärb. berichtet (K. Tamao, M. Kumada, J. Organomet. Chem. 30, 339 (1971), daselbst weitere Lit.).
- [6] Siehe z.B. O.W. Steward, W.L. Uhl, B.W. Sands, J. Organomet. Chem. <u>15</u>, 329 (1968); T.J. Hairston, D.H. O'Brien, ibid. <u>23</u>, C41 (1970).

(Received in Germany 4 June 1986)